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1 Introduction 

Managed for the  National  Aeronautics  and Space Administration  (NASA) by the California 
Institute of Technology, the  Jet  Propulsion  Laboratory  (JPL)  is  the lead United  States 
center for robotic  exploration of the solar  system.  Recently a number of robotic missions to  
Mars have been. undertaken.  Mars  Global Surveyor is  orbiting  Mars  and  sending very high 
resolution  images of the red  planet.  Mars  Pathfinder  and  its  Sojourner Rover have finished 
their mission after a spectacular  landing  and  the first use of a roving vehicle on  Mars. 

The Surveyor Program  consists of a series of missions that will explore Mars  and  bring 
samples to  Earth.  Current plans  call  for  launching two spacecraft at each  launch  opportunity 
every 26 months,  typically  an  orbiter  and a lander. The first of these is the '98 mission 
which will have a lander  with a robotic  arm.  The  robotic  arm will be used to scoop soil and 
perform  in-situ  analysis.  In  '01 a lander  with  an  arm  and a copy of the  Sojourner rover is 
expected  to  be used for  near-lander science operations. The '03 and '05 missions will have 
long  range rovers with several science instruments  on-board.  These rovers will explore  Mars 
by traversing  many  kilometers on the surface.  In addition  they will be  drilling rocks and 
caching  samples for return  to  Earth.  The research described in this  paper  addresses some of 
the key navigation  technologies  required to field long range rovers on  Mars. 

1.1 The  Sojourner Rover 

We briefly summarize  the  capability of the  current  state-of-art  in  planetary rovers by de- 
scribing  the  Sojourner rover. This rover has  six wheels, each 13 centimeters in diameter  and 
made of aluminum  with stainless-steel treads  and  cleats. A rocker-bogey suspension  system 
allows each wheel to move up  and down  independently of all  the  others.  Sojourner  is  capable 
of scaling a rock of more  than 20 centimeters  height. 

A laser striping  system in  conjunction  with  multiple  monocular  cameras is used to  detect 
obstacles  immediately  in  front of the rover. The vehicle is  steered  autonomously  to avoid 
obstacles while continuing to  attempt  to achieve the  commanded goal location.  Tilt sensors 
allow the rover to be  autonomously  halted if it is dangerously close to  tipping over. 

While  stopped,  the rover updates  its  measurement of distance  traveled  and  heading using 
the averaged wheel odometry  and a single  on-board  heading  gyro.  This  provides an  estimate 

1 



of progross to tho goal  location. The lander is also a crucial elernent, for the  navigation of 
the rovor. Its  stereo  cameras  obtain  panoramic images of the  area  surrounding  the rover 
which idlow mission operators on Earth  to  periodically  locate  the rover as well as determine 
way-points for subsequent rover movements. As a consequence, rover operations  are  limited 
to  the  near vicinity of the  lander. 

1.2 Long  Range  Rovers 

Unlike the  Sojourner rover, which traversed a total of 104 meters in the  Pathfinder mission, 
long  range rovers could  traverse to goals  many  kilometers from the  lander.  The  scenario 
for long range rover operations  consists of traversing  in  the  commanded  direction  to a goal 
region while periodically  (e.g.,  every 100 m to 200 m)  transmitting  panoramic  images  to 
the  Earth'via a relay satellite.  The  operators  on  Earth provide new commands  to  either 
continue the traverse,  select a new goal,  or if the  site  is of interest to scientists,  issue  various 
site  survey  related  commands. 

All navigation is without  the benefit of a lander  and  must  therefore  be highly autonomous. 
The rover must  be  able to  reliably  traverse  long  distances,  avoiding  obstacles that  are not 
visible to  the  operators  on  Earth in orbiter,  lander  descent, or  lander  panoramic  images.  At a 
given location,  the rover must  be  able to reliably achieve science goals  involving pointing  and 
placement of science instruments  on  targets  designated in returned imagery. Furthermore, 
the rover should  be  able  to  locate itself within  the  area of operations  without  the benefit of 
an  external view provided by a lander  stereo  camera. 

In  order to  achieve these goals, the long range rover research program at JPL  has focussed 
on: 

0 Implementation of a research rover vehicle called Rocky-7 (the  name  being derived 
from the  continuing use of the Rocker/Bogey  suspension system at JPL). 

0 Utilizing  stereo-imaging to  obtain a dense  range map of the rover surroundings for use 
in  obstacle  avoidance. 

0 Integrating a celestial  sensor  (i.e., a sun  sensor)  to  determine  the rover's orientation. 

0 Developing a rover-attached  deployable  mast  with  mounted  stereo-cameras to  obtain 
high-vantage panoramic  images of the  area  surrounding  the rover. 

0 Developing advanced  path-planning  techniques in  conjunction  with  mast  imagery de- 
rived obstacle  maps  to  navigate dense rock fields. 

0 Utilizing mast  imagery derived range  maps  and  range  map  matching  techniques  to 
periodically  re-establish the  location of the rover within a work area. 

0 Integrating  image  feature  extraction  and  tracking  methods  to serve as a means of visual 
odometry  during rover motion. 
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Of thesc  itcrns the  last one,  namely the state  cstimation framework, forms  the  focus of 
this  paper. A key objective is a full state (position  and  attitude)  estimator based on a sensor 
set  consisting of a sun-sensor,  gyros, a 3-axis accelerometer  and  the vehicle kinematic sensors. 
Of some interest here is to achieve this  with a reduction  in  the electro-mechanical  complexity 
of the vehicle by reducing  the  the  number of gyros to a single  heading  rate  sensor  instead of 
a full 3-axis implementation.  The  aim is to improve the precision of the  odometry  estimate 
by using the full  kinematics of the rocker/bogey  mechanisms of the rover as it traverses 
undulating/bumpy  terrain.  This is considerably more complex than a kinematically  simpler 
vehicle operating on a flat indoor  environment. 

In  addition  to  providing a backup to  vision-based methods in  regions of low visual  content, 
improving  the precision of the  odometry allows vision-based estimation  techniques to  be 
improved.  Visual feature  tracking  and  range  map  matching  methods  can  be layered  on top 
of the baseline estimator  with increased  robustness to failure,  reduced  search/computation 
costs,  and less frequent  use of mast  deployments  and  related  imaging  operations.  The  Kalman 
filtering  framework adopted also  provides a natural Bayesian  means of combining  these 
visually  based estimates  into  the full state  estimate.  Another  objective,  is  to develop a 
sensing/estimation framework in which sensors  can be  enabled/disabled based  on monitoring 
of filter  residuals,  and  mode  switching between  different estimator  banks  is  triggered by 
observability  conditions. 

1.3 The Rocky-7  Research  Platform 

In  this  section we describe  the Rocky-7 rover configuration shown in  Figure 1, and  detail  the 
components relevant to  the navigation of the vehicle. 

Like Sojourner,  the wheel diameter of Rocky-7 is 13 cm. The mobility  system is a 
modification of the Rocker-Bogey design used in  previous rovers at JPL . It consists of two 
rockers hinged to  the sides of the  main body. Each rocker has a steerable wheel at one 
end  and a smaller bogey at the  other  end. Unlike its predecessors  Rocky-3 and Rocky- 
4 (and  the  Sojourner flight rover) that have four steerable wheels, Rocky-7 has only two. 
Here too  the  emphasis is on  investigating  reduced  number of actuators  to  minimize  system 
electro-mechanical  complexity. 

The sun-sensor used on Rocky-7 is  the  Lockheed-Martin  Wide Angle Sun  Sensor  (WASS) 
with a 160  degree field-of-view providing sun  azimuth  and elevation  in its  coordinate  frame. 
It is mounted  on  the  solar panel of Rocky-7. The  rate gyro is the QRS-11 vibratory  gyro 
from  Systron-Donner,  and  the  accelerometers  are  from  Lucas-Shaevitz  mounted  in a 3-axis 
cage. Internal angles of the rover mechanism are  read by potentiometers.  Wheel  drive  and 
steering  angles  are  read by optical  encoders. 

The rover is equipped  with seven CCD cameras, two at each end, for the  hazard avoidance 
system  and  three on the  mast (2 for stereo,  and 1 for close-up viewing). The  hazard avoidance 
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Figure 1: Rocky-7 Side View 

system uses passive stereo-vision with a pair of cameras  with wide-angle lenses that allow 
detection of rocks and  other  hazards  extending from  near the rover wheels to  about 1.5 
meters  distance. 

1.4 Previous Rover State Estimation Work 

We briefly describe  some  representative  related work in the  area of mobile robot  state esti- 
mation. Since  Global  Positioning  System  (GPS) based methods  are  not  currently  applicable 
to a vehicle on Mars, we have excluded  them  from our discussion. 

A  number of efforts have concentrated on the  localization of the mobile robot based on 
external  sensor cues. For example,  beacon-based  localization of a mobile robot  has been 
considered by Leonard [9] in which an Extended  Kalman  Filter (EKF) is employed to  match 
environment  observations to a map.  Matthies [ll] used a Kalman  Filtering  approach  to 
track  stereo vision features  and  obtain vehicle motion.  Baumgartner  and  Skaar [2] estimate 
a vehicle’s position  and  orientation based on visual  cues  in  discrete  locations within a struc- 
tured  environment combined  with  sensed wheel estimates by an  EKF. Olson [15] utilizes 
range  map  matching to periodically localize a mobile vehicle. 

Other efforts have aimed at  fusing  inertial  navigation  sensors  with  odometry.  Borenstein 
and Feng [3] develop a technique  called  gyrodometry  where  gyro data is only  used when the 
gyro  and  odometry  estimates differ, such as when traversing a bump.  Barshan  and  Durrant- 
Whyte [l] also use inertial sensors in an  EKF  to  estimate  position. Vaganay and Aldon [17] 
utilize  accelerometers  and gyros for vehicle attitude  estimation. Fuke and  Krotkov [5] utilize 
gyros and accelerometers  together  with  odometry to  estimate vehicle attitude  estimates. 
Their filter allows the accelerometer  signal to dominate at  low frequencies and  the  gyro  to 
dominate  at higher  frequencies. The combination of gyro  and  sun-sensor data for vehicle 
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attitude  estimation is addressed by Roumeliotis  and Bekey [16]. 

Kinematic techniques  include an effort by  by Kim,  et.al [8] to  extend a dead-reckoning 
formula for a two-wheeled mobile robot motion on a known curved  surface. Slip modeling 
for a vehicle operating in the  plane  is considered by Madhavan,  et. a1 [lo]. Here a random 
walk model for a slip  angle  parameter is introduced for estimating  the  motion of a truck 
with  planar  articulation  elements. 

As we see,  many vehicle state  estimation  methods have  been  applied to vehicles with 
relatively  simple  kinematics and  no  slip,  operating on mostly flat terrain,  and  using expensive 
external sensor cues such as that provided by vision. In  this  paper, we attempt  to develop 
new techniques  suitable for use on  kinematically  complex vehicles traversing  highly uneven 
terrain,  with explicit  modeling of slip,  and using a minimal  complement of basic  sensors. 

2 Rover Kinematics Model 

In  this  section, we discuss the  model used for rover state  estimation.  This  consists of a simple 
state-space  model  to  smoothly  propagate rover position  and  attitude, a rover kinematic 
contact  model  to  describe wheel interactions  with  the  ground,  and  measurement  models for 
the  various sensors. 

2.1 Coordinate Frames  and  Variables 

Coordinate  frames  and variables are as defined in Figure 2. The unconstrained rover’s 
degrees-of-freedom (dof’s)  are seen to  be  three  translational,  three  rotational,  three  internal 
( 7 0 ,  71, 7 2 ) ,  two steering (Al,  X,), and six  drive ($1, . . . , $ 6 ) .  Contact  interactions at each 
wheel constrain  these  dof’s  to  result in the rover typically  having  two  translational  dof’s 
(x,y)  and  one  angular dof (heading) when in full contact  with  the  ground. 
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Frame 

Figure 2: Rocky-7  Kinematics 

2.2 Process Model 

The process  model sets  up  the differential equations governing the  system.  It defines the 
state vector and  associated  state  equations. 

2.2.1 Translation State Equation 

A simple  kinematic  model is provided for the  translation of the  system. 

The  translational  position =x E R3, of the rover frame is resolved in  the  inertial  frame. 
However, the velocities vc, up E R3 are resolved in the  body  frame.  The  body velocity v ,  
is given by the  sum of two velocity terms v = II, + up. The u, is the  prescribed velocity 
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that  the rover is attempting  to follow as generated by the  on-board  controller.  Typically 
this would be the J: and y components of the  body  translational velocity. The up represents 
a perturbation velocity which is damped  out by the  damping  matrix A,  and  driven by an 
acceleration noise n,. The  matrix R(q) is the  rotation  matrix of the rover attitude as a 
function of q ,  the  attitude  quaternion. 

2.2.2 Attitude  State Equation 

A  purely  kinematic  model is also provided for the  attitude of the  system. 

All angular variables are resolved in body  coordinate  with q E R4 being the  attitude 
quaternion.  The  total  body  angular velocity w is the  sum of two terms w = w, + wp, with 
w,, up E R3. The w, is the prescribed rate  that  the rover is attempting  to follow as generated 
by the on-board  controller.  Typically  this would be the z-axis component of the  body  angular 
velocity. The wp then  represents a perturbation  angular velocity which is damped  out by the 
damping  matrix A, and driven by an  angular  acceleration noise n,. The  terms  in  quaternion 
evolution  equation  are given by: 

0 -w3 w2 

-w2  w1 0 
Q ( w ) 4  [ -wx -WT “ 1 ;  0 w x  e [ w3 0 - w l ]  

Small  Angle Evolution 

The basic idea is to  define an  intermediate local  model to which the  standard  continuous- 
discrete  Extended  Kalman  Filter  (EKF)  equations  can  be  applied [6]. Let the  quaternion 
q be given in terms of angle/axis  variables ( 0 , u ) ,  where 0 E R1 and  unit  vector u E R3, 
as [7]: 

= [ ; I  

Because the  normalization  constraint qTq = 1 is not explicitly enforced in  the  estimator 
design,  the  quaternion q acts as an  over-parameterized  representation of the 3-axis attitude. 
In  order  to avoid the  redundant  state, a local  vector angular variable 0 E R3 is defined by 
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a local  linearization at the beginning of each propagation  step. After the  completion of the 
corresponding  update  step,  the local angular  variable is absorbed  into  the  quaternion  from 
the  previous  linearization. The process is continued  with  subsequent  linearizations. The 
corresponding  covariance  terms  are  maintained in terms of the local angular  variable, which 
characterizes a ball of uncertainty  about  the  attitude  estimate. 

For some t = t o  and q(to) = qo, a local angular  variable 8 is defined by the change of 
variables: 

which can,be solved to give: 

where “lm{.}” is used to  indicate  the first three so-called imaginary  components of the 
quaternion as given in (4a).  Then from ( 2 )  and (3) the linearized equation for 8 becomes: 

1 .  1 
~ = w - - w  2 8 = ( W c + w p ) ” ( W ; + L i J X ) ~  2 P 

Note  that  this  parameterization  is  linear  in 8 but preserves the  nonlinear  dependence of 
w for this  accuracy in 8. This  is a locally valid nonlinear  system which avoids  difficulties 
associated  with  the  redundancy of a quaternion  representation of attitude. However, it 
is  nonlinear  and  remains to  be further linearized in  the  usual  EKF sense to realize the 
propagation  and  update  stages of the filter. 

2.2.3 Contact State Equation 

The  contact  point vector 5 = {&,[2, 6 , J 4 , t 5 ,  56} is  modeled very simply as a set of 
one  parameter  contacts  about  the  equator of each wheel, with  the  nominal  contact  position 

= 0. In  reality  there is an  additional off-equatorial coordinate for the  contact  point at 
each wheel, a contact  rotation  angle,  and two parameters  that  describe  the  point  on  the 
ground [13]. However the one  parameter model suffices to  capture  and  couple  the  rotational 
and  translational velocities. The dynamics of encoded in A, ensure that  the  contact  point 
eventually  returns  to  the  nominal  position  and  thereby  ensures  correct  steady-state  behavior 
in the  estimator when the rover travels  on  slopes of constant  inclination. 

There  are issues regarding  the observability of the  contact  points which are  not discussed 
here. However, the  experimental  results  indicate generally  good  observability for typical 
rover motions. 
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2.2.4 Gyro Bias State  Equation 

[ b ] = [ n b ]  

The gyro  bias  vector b = { b l ,  b2, b3}  is modeled as a random-walk.  Normally,  the  periodic 
measurement of all three  attitude  components by an  absolute  sensor such as 3-angle sun- 
sensor allows the  gyro biases to be  estimated while the rover is in motion. However, if only a 
single  gyro is used in conjunction  with a sun-sensor that only  measures 2 attitude variables, 
then  gyro  bias  observability is more  complex,  becoming a function of the sun-angle  geometry 
and  the  kinds of attitude motions  being  undertaken by the rover. However, since the  Mars 
rover operations  call for the rover to periodically  come to a stop (every few meters),  bias 
can  be  simply  estimated by averaging the gyro data  during  these  times when the rover is 
stopped.  Therefore we choose to  not  incorporate  this  model  into  the  state  estimator at this 
time. 

2.3 Measurement Model 

The measurement  models  relate the  state variables to  the sensor data available  from the 
system. Here we consider the  standard  complement of sensors  available to  the rover, as well 
as a kinematic  constraint  that we treat as a measurement. 

2.3.1 Accelerometer Equation 

The accelerometer  readings is given by: 

Here  all  variables are resolved in body  coordinates  and  the accelerometer frame is assumed 
to  be aligned  with the rover frame. The  term Lb is the vector  from the rover frame to 
the accelerometer  frame  origin. If the acceleration a is not modeled as a state,  then  the ac- 
celerometer data can  be used to drive the process equation in the so-called sensor integrating 
form in  lieu of the expression  in Equation 1: 

~p = a, - cc + R ( q ) g  - ( w x v p  + W'V, + w X w X L b  + WXLb)  T (11) 

2.3.2 Gyro Equation 

[ W m ] = [ B g W + b ] + [ n g ]  
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Mere the  gyro  measurement w,, givcs the  angular  rate w in the  body  frame. If a full 3-axis 
gyro is present  the Bg is an  Identity  matrix. However, if only a heading  gyro is present,  the 
matrix Bg implements  the one-axis  gyro  measurement  with: 

B $ [ O  0 1 3  

2.3.3 Sun-Sensor Equation 

The sun-sensor design is a wide-angle lens which projects  an  image of the  sky on a two- 
dimensional  position  sensing  device [4]. The  output  currents of this device, specifically the 
ratio of currents for each  dimension,  provides  the  position of the  centroid of the  Sun's  image 
from  the edge of the device. With  the edge currents  designated as { I l ,  I2,13,I4} the centroid 
location  is given by: 

The sun-sensor has  optics  most easily  described by a fish-eye lens  model.  In  the sun-sensor 
frame,  the  sun  azimuth  angle is given by atan( s, (2)' -s, (1)) , and elevation by 7r/2( 1 - 
d s m (  1)2 + ~ ~ ( 2 ) ~ ) .  Equivalently, we choose to consider the  output of the  sensor  to  be a 
function of the two independent  components of the  unit vector to the  sun as resolved in the 
sun-sensor  frame. This is given by: 

where: 

The  unit vector s, respresents the sun-vector  in inertial  coordinates.  This vector  is 
rotated  into  the sun-sensor coordinate  system (which is taken to be the rover frame) by the 
matrix R(q) E R3x3 corresponding to  the  quaternion q .  The noise term ns lumps  the effects 
of electronics noise as well as calibration  errors. 

2.3.4 Kinematic Slip Equation 

There is no simple  analytical  formulation of the inverse kinematics map  that  relates wheel 
rotations  and  contact  interactions  to  the vehicle motion. Such a map must  necessarily involve 
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the  dynamics of the vehicle and is too  complicated for implementation in the filter.  Instead 
we choose to embed the easily  established  forward  kinematics  within a measurement in the 
filter. We shall see that  this allows a natural  implementation  of  the full  kinematics of the 
vehicle. It exploits  the  ability of the  Kalman filter to perform the  appropriate  least-squares 
averaging of the  action of each kinematic  chain in the rover. 

Each  such  forward kinematic  chain  has a component defined by sequence of links  joining 
the rover frame  to each wheel contact  point,  and a component given by the  slip between the 
wheel and  the  ground. We introduce  the  notion of a slip  measurement, tmi ,  that defines the 
relative 6-dof motion of the  contact  frame Zfi (see Figure 2) on  the wheel with  respect to  the 
ground.  This  slip is a function of the vehicle configuration,  the 6-dof vehicle velocity, the 
wheel-to-ground contact  point  location,  and  the  joint  rates  associated  with  the  kinematic 
chain  emanating from the rover frame  to  the  contact  point. 

The Ad;' term  is  the  Adjoint  Operator [14] given by: 

with 

0 " p 3   P 2  

P X  5 [ P 3  0 -;1] 

- P 2  P l  

The  term gslfi represents  the  transformation from the rover frame  to  the  contact  point. 
The  term J.9ri represents the  Spatial  Jacobian [14] to  each wheel center  and  is a function of 
the  kinematics of the rover. 

Here the  internal  angles  are  represented by y = {yo, yl, y 2 } ,  the  steering  angles by X = 
{ X I ,  & } ,  the drive  angles by $ .= { $ I ,  $2, $ 3 ,  $4, $5, $s}, and  the  contact  point by &. The 
terms Ad;' is a function of y, X ,  and E .  However, it is not a function of the  driving  angles 
$ because of rotational  symmetry of the wheel. The  term J:f, is also  not a function of the 
driving  angles $ and  is  only a function of y and X .  

A variety of choices are possible for the B matrices. We choose to  adopt  the B matrix 
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B =  

1 0 0 0  
0 1 0 0  
0 0 1 0  
0 0 0 0  
0 0 0 0  
0 0 0 1  

This  slip  measurement  can  be  decomposed  into a known deterministic  component  and 
a component  that is only known in a statistical sense. The  deterministic  component of the 
slip,  indicated by a non-zero  nominal value of t,, is used to  capture  the effects of a known 
steering  action. For example, a known rotational  slip  about  the  vertical is always  present 
at each wheel to  accommodate  the yaw motion of the vehicle during a turn. Also,  some 
transverse  slip is introduced  due  to  the  nature of the non-steered bogey wheels on a rover 
like Rocky-7. In  this case, the bogey wheels have their  rotation  axis on two parallel  lines 
longitudinally ( x )  offset from  each other. As a consequence there  is always some  transverse 
slip even during  an Ackerman  based steering  turn unless  one is going  on a straight  line  on flat 
terrain.  These  deterministic  slips  are easy to  calculate for Ackerman  steered motions  on flat 
ground  and  are used as approximations  to  the  true  deterministic  slip even during  motion over 
non-flat terrain.  Another  deterministic  slip  measurement can  be  derived  from experiments. 
For example, over sandy  terrain, a known rate of experimentally  derived  longitudinal  (x)  slip 
during  traverses can be  added as a non-zero t ,  term. 

A slip  action  that is only  modeled statistically  is  due to  the wheel-ground interaction at 
each individual wheel. Consider the case when each wheel is  driven by a control  algorithm 
that  attempts  to maximize  compliance of the wheel-ground rolling interaction,  and also 
maximally  coordinates  the  control effort across all  the wheels. Then  the slips at each wheel 
in the  longitudinal  (x) rolling  direction  are  all  independent of each other.  In  this case 
of Uncorrelated  Slip  Noise, the  slip  can  be modeled as independent  white noise with  the 
corresponding  correlation  matrix  having  terms  only  on the diagonal. Now consider a rover in 
which each wheel is independently  driven by a high-gain,  “stiff”  control algorithm.  Then each 
wheel rotates  to follow the set-point  established by the controller  and  does  not  accommodate 
to  any wheel-ground forces of interaction.  The  slips at each wheel are  then  just  direct 
kinematic  transformations of the  deviation of the vehicle frame  motion from its  nominal 
path.  The covariance matrix of this Cowelated  Slip  Noise can  be  derived by transforming 
the process noise of the vehicle motion by the  Jacobian from the vehicle frame to  the wheel- 
to-ground  contact  frames,  and will contain  many off-diagonal terms. 

Another  statistically modeled  slip  action is due  to  the  terrain  curvature. As the vehicle 
makes  progress  on the  terrain,  the rocker-bogey mechanism  mostly accommodates  the vehicle 
to  maintain  contact over the  terrain  and a highly compliant wheel controller  can zero out 
any rolling  slip. However, there is usually  some inevitable  transverse  slip at each wheel to 
accommodate  the  curvature changes of the surface at each wheel contact.  This  slip  can  be 
modeled as a zero-mean process with  time  constants  and  dynamics  related to  the  rate of 
change of surface  curvature  parameters along the rover path. 
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In actual  practice,  thc  slip at  tho whcel is a combination of all of the  above processes. 
We choose not  to  model all the  statistically describable noise terms in all of their complexity. 
Instead we select a simple  un-correlated  slip model for our early  implementations, with the 
covariance strengths  determined by experiments.  There may  also  be opportunities  to develop 
a slip  related  measurement using the  motor  current  data  on  the  drive  motors  but  this  too 
has  not been explored in detail  yet. 

3 Nonlinear State Estimation 

In  this  section, a nonlinear state  estimation scheme is developed  based on the process and 
measurement  models defined in Section 2.2 and  Section 2.3. 

In  this  paper, from the various  measurement  models, we have chosen to focus on those 
implementing  the  heading gyro in  conjunction  with  the sun-sensor. We have deliberately  not 
considered the use of 3-axis gyro  because of our  interest  in  minimizing the  number of attitude 
sensors  used. A$ the gyro and sun-sensor appear  adequate  in  capturing  attitude  information 
we have  chosen, at present,  to  not use the accelerometer  measurements. However, they could 
serve the  the  purpose of establishing  long  time-scale attitude  variations.  It  should be noted 
that  the use of the accelerometer data as a sensor for vehicle acceleration  is very sensitive 
to  small  attitude  errors. 

We choose to model  the various joint angles and  corresponding  rates as largely  determin- 
istic so as to avoid having to  introduce  these as additional  states in the filter.  Each of these 
joint  variables  is  independent of the  others  and is directly  observable  from  measurements 
with only  some  simple smoothing  and differencing to derive the  corresponding angles and 
rates. 

The  Kalman filter state is denoted by 

Note that we are  using  the small-angle  process  model defined by Equation 7. The measure- 
ment vector is denoted by: 

The overall  nonlinear state  estimation scheme for propagating  the  state X ,  covariance 
P ,  and  associated  quaternion  state q can  be  outlined as follows: 

1. 

2. 

For given x k - l  (-I-), &I (+) ,  q k - l ( + )  re-parameterize  in  terms of the local quaternion 
state qo = q k - l ( + )  to get state  and measurement  equations. 

Implement  standard continuous-discrete EKF algorithm (cf. [6], p.  188). 
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( i )  Propugate state  and covariance from t k - ,  to t k :  

(ii) Update state  and covariance at t k :  

3. Update associated  quaternion state  and re-initialize  local angular variable at t k :  

4. Proceed to next  stage of propagation  and  updating ( k  t k + 1). 

4 Experiments 

Two  sources of data  are available for validating the  state  estimation  algorithms.  The first 
is  test  data  from Rocky-7 operated  in  the JPL Mars  Yard, a 15 X 25 meter  outdoor  test 
area  that closely simulates Mars-like terrain  constructed  on  the basis of statistical  analysis 
of images taken by Viking  Landers  I  and 11. The second  source is a high-fidelity kinematic 
simulator of the rover contact  kinematics [18]. This  simulator solves for the  contact con- 
figuration for a set of closely spaced  points  along a specified rover path.  It  then uses the 
contact  geometry  and  surface  parameters of the wheel and  ground  to derive wheel motion. 
As such the results  correspond closely to  the case of highly  compliant  control  algorithm at 
each wheel minimizing  slip  in  the  rolling  direction. 

We report  results for three  test  setups.  The first  two are for a simulated Rocky-7 rover 
where  extensive  comparisons to  the  ground-truth  data is  possible. Then we show some 
experimental  results  on  the Rocky-7 system  with data from the  Mars  Yard. 

4.1 Filter Operation With Simulated Data 

Here we demonstrate  the  tracking of rover position  and  attitude from a combination of sun- 
sensor,  heading  gyro  and the wheel sensors.  Two test cases are  simulated.  The first one 
corresponds to  the case of a rover moving in a straight line over an  undulating  terrain.  The 
second test case  corresponds to a turn-in-place  maneuver over the  same  terrain.  In  both 
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4.1.1 Straight-Line  Motion 

A sequence of animation cells (left-to-right,  top-to-bottom  order)  in  Figure 3 shows the rover 
motion. 

Figure 3: Rocky-7 Straight-Line  Motion  Over  Undulating  Terrain 
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Sensor data is shown in Figures 4, 5 ,  6, and 7. As the  steering angles are fixed during  this 
motion  they are not plotted. We also chose to plot the  drive  joint  rates as these  highlight 
the drive  variations at each wheel as  they move across the surface. 
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Figure 4: Heading  Gyro  and  Sun-Sensor Data 
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Figure 6: Right Drive Train  Rates 
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Figure 7: Internal  Joint Angles 
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For the  straight-line  motion,  the  ground-truth  attitude and the  estimated values are 
shown  in  Figure 8.  The  ground-truth position and  the  estimated values are  shown in Figure 
9 and  the  ground-truth  contact  points  and  the  estimated values are shown in Figure 10. 

We note  the cross-track  error in 2(2) reaches a maximum of about 14 mm. This is a 
result of a one-directional  transverse slip  active  for the  portion of the motion  shown.  Over a 
larger  section of terrain  this  slip  component would average out  to zero  resulting  in the filter 
reporting only a small cross-track error on average. We also  observe that  the  tracking of the 
contact  points is quite  accurate,  although  with  some lag. 
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Figure 8: Ground-Truth  and  Estimate For Attitude 
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Figure 9: Ground-Truth  and  Estimate For Position 
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Figure 10: Ground-Truth  and  Estimate For Contact  Points 
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The corresponding  covariances  are shown in Figurc 11 and  Figure 12. As expected  there 
is a growth of the  positional covariance  with  time. 
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Figure 12: Covariance of Position  Estimate 
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4.1.2 Turn-In-Place Motion 

Figure 13: Rocky-7 Turn-In-Place  Motion Over Undulating  Terrain 
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As before in the case of straight-line  motion, sensor data is shown in Figures 14, 15, 16, 
and 17. 
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Figure 14: Heading  Gyro  and Sun-Sensor Data 
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Figure 15: Left Drive Train  Rates 

22 



Figure 16: Right  Drive Train  Rates 
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For the  turn-in-place  motion, t,hc ground-truth  attitude  and  the  estimated values arc 
shown in Figure 18. The  ground-truth position and  the  estimated values are  shown in 
Figure  19  and  the  ground-truth  contact  points  and  the  estimated values are  shown in Figure 
20. 
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Figure 18: Ground-Truth  and  Estimate For Attitude 
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Figure 19: Ground-Truth  and  Estimate For Position 

We note  that as the various  slip noise values tend  to average out  to zero as  the rover 
returns  to  its  starting  point,  the  estimates also recover from  any  bias  shown during  the 
motion. We also  note that  the  contact point  tracking  is  quite  good  except  for  bogey wheels 
3 and 6. 
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Figure 20: Ground-Truth  and  Estimate For Contact  Points 
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The corresponding  covariances  are shown in Figure 21 and  Figure 22. As expected  there 
is a growth of the  positional covariance  with time. 

Figure 21: Covariance of Attitude  Estimates  In  Terms of Small Angles 
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Figure 22: Covariance of Position  Estimate 
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4.2 Filter  Operation With Experimental  Data 

Here we demonstrate  the  tracking of rover position  and  attitude from a combination of sun- 
sensor,  heading  gyro  and  the wheel sensors. The control  algorithm used on the rover consists 
of individual high-gain controllers  on  each wheel. No wheel coordination is attempted based 
on any of the  returned sensor data.  The motion for this  test  set  consists of a straight-line 
traverse  on flat terrain  with a single  obstacle (a brick) encountered by the  right wheels 
(wheels 4,5,6). The  obstacle is successfully traversed  with  the rover coming to rest  with a 
portion of the right  bogeys (wheels 5,6)  still  resting  on  the  obstacle. 

The obstacle  causes  two  simultaneous effects. It  results in a rover pitch-up as the wheels 
negotiate  the  obstacle as well as a change  in  the roll angle.  Due to  the  momentum of the 
rover motion,  there is minimal  change  in  the rover heading. The  data  set is for a twenty 
second period  with  the  filter  operating at 10 Hz. 

Sensor data from the  attitude sensors  is shown in  Figures 23. As the  steering  angles 
are fixed during  this  motion  they  are  not  plotted. We also note  that  due  to  the  nature 
of the  control,  all  the  drive wheels follow essentially the  same  commanded  5th-order  spline 
trajectory regardless of the forces and  torques experienced at each wheel. We have  therefore 
chosen to only  plot  one of these,  namely that for wheel-1 in  Figure 24. Internal  configuration 
angles  are  plotted in Figure 25. In  this  experimental  run, we did  not have access to  the 
prescribed motion values  being  generated by the  controller. We therefore  treat  the  entire 
body velocity of the rover as a perturbation  and allow an increased  process noise term in 
the filter to allow for its  estimation. 
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Figure 23: Heading  Gyro  and Sun-Sensor Data 

The  estimated  angles  are is shown in Figure 26. We see that  the  estimator  has  correctly 
picked up  the roll and  pitch deflections  induced by the  obstacle. 

The  estimated  positions  and velocities are shown in  Figure 27. We see that  that  the 
estimator  has  correctly picked up  the z-deflection cause by the brick that results in an 
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5 

Figure 24: Left  Wheel-1  Drive Train Angle 

increase  in vehicle height. 

Estimated  contact  states  are shown  in  Figure 28. We note  that  the  contact  angle varia- 
tions  are  quite  large  under  the  right wheels as would be  expected by the  traversal of those 
wheels over the  obstacle. Since the final  configuration of the rover is  such that  the right-side 
bogey  wheels are in the middle of traversing  the  obstacle,  the  contact  points  are significantly 
displaced  from  zero. However, the  contact  point for the right  front wheel returns  to  near 
zero as it proceeds on level ground  after  climbing over the obstacle. As expected  the wheels 
on  the left  side of the vehicle experience very little  change in contact angles. 
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Figure 25: Internal  Joint Angles 
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Figure 28: Estimate For Contact Angles 
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The corresponding  covariances  are  shown in Figure 29 and  Figure 30. An initial high 
covariance is reduced by the first few sensor  measurements. As expected there is a growth 
of the  positional covariance  with  time. 

Figure 29: Covariance of Attitude  Estimate  In  Terms of Small  Angles 
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Figure 30: Covariance of Position  Estimate 
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Ground-truth for this experiment is obtained by measuring  tape  and  protractor  at  the 
end of the  run.  The  estimated  attitude values match  the  ground-truth values  within the 
precision of the  measurements  taken.  The  estimated  position values  are  within 1 cm of the 
ground-truth  data  and  the  estimated  contact angles are  within 5 degrees of the  ground-truth. 

5 Conclusion 

We have demonstrated a kinematic  estimator that successfully  addresses the issues involved 
in roving  a  kinematically  complex vehicle over non-flat terrain. By formulating a slip- 
measurement  concept, we have been  able to  incorporate  the  kinematics  and  slip behavior of 
the vehicle into  a  Kalman filtering  framework.  In addition  to  more  experiments  to  charac- 
terize  and  tune  the  system, we also  expect to work on  the following items: 

0 Incorporating  the accelerometer  sensor data  during  motion. 

0 Incorporating a smoother  to post-process the sensor data every time  the rover comes 
to one of its  periodic  halts. As we can obtain very precise attitude  estimate when 
the rover is stopped using the accelerometer and  sun-sensor,  running  the sensor data 
through  the  smoother will allow us to reconstruct  many of the process disturbances 
and reduce the covariance of both  the  attitude  and  position  estimates. 

0 Using some  results  from  nonlinear  observability  theory that allows one to switch op- 
timally between gyro  and sun-sensor based attitude  estimation  together  with  simulta- 
neous  bias calibration of the gyro. 

0 Combining the kinematic  estimator  developed  here  with  visual  odometry  and  range- 
map  matching techniques. 
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